The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of the UDP-glucose-binding polypeptide of callose synthase from Beta vulgaris L. by photoaffinity labeling with 5-azido-UDP-glucose.

The photoaffinity probe 5-azidouridine 5'-[beta-32P]diphosphate glucose (5N3[32P]UDP-Glc) was used to identify a 57-kDa polypeptide as a strong candidate for the UDP-Glc-binding polypeptide of UDP-glucose: (1,3)-beta-glucan (callose) synthase from red beet (Beta vulgaris L.) storage tissue. Unlabeled 5N3UDP-Glc was a competitive inhibitor of callose synthase with a Ki of 310 microM. Callose synthase was purified from plasma membranes by a two-step solubilization with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate, followed by product entrapment, and photoincorporation of radioactivity from 5N3[32P]UDP-Glc was used to identify UDP-Glc-binding polypeptides that copurified with callose synthase activity. Photoinsertion into the 57-kDa band was closely correlated with all catalytic properties examined. Photolabeling of the 57-kDa polypeptide was enriched upon purification of callose synthase by product entrapment, was abolished with increasing levels of unlabeled UDP-Glc, was dependent upon the presence of divalent cations, and the pH dependence of photolabeling correlated with the pH activity profile of callose synthase. In addition, photolabeling of the 57-kDa band did not occur after phospholipase treatment, which destroys enzyme activity. The extent of labeling of this polypeptide thus correlates closely with the activity of callose synthase under a wide variety of conditions. These results imply that the polypeptide at 57 kDa represents the substrate-binding and cation-regulated component of the callose synthase complex of higher plants.[1]

References

 
WikiGenes - Universities