The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

On the mechanism of action of dexamethasone in a rat mast cell line (RBL-2H3 cells). Evidence for altered coupling of receptors and G-proteins.

Prolonged exposure of rat basophilic leukemia (RBL-2H3) cells, a cultured analog of rat mast cells, to 0.1 microM dexamethasone resulted in global suppression of various stimulatory events in response to Ag and a global enhancement of the same stimulatory events to the adenosine analog, N-(ethylcarboxamide)adenosine (NECA). We had previously shown that Ag and NECA both activate phospholipase C but by different mechanisms; cells that had been treated with cholera or pertussis toxin, for example, responded to Ag but not to NECA with the release of inositol phosphates, increase in levels of cytosolic Ca2+, and secretion. Because the toxins still inhibited the responses to NECA in dexamethasone-treated cells, the effects of dexamethasone may have been exerted at the level of receptor/G-protein coupling rather than at the level of effector systems. Additional evidence for this was the following: 1) NECA-induced hydrolysis of the inositol phospholipids was still enhanced after permeabilizing (with streptolysin O or Staphylococcus alpha-toxin) and washing the cells; 2) the response to the G-protein stimulant, guanosine 5'-(3-O-thio)triphosphate was also enhanced in permeabilized, dexamethasone-treated cells and 3) binding and kinetic studies suggested that the enhanced responsiveness to NECA was attributable in part to an increase in receptor number. The suppressive action of dexamethasone on Ag-induced hydrolysis of inositol phospholipids, however, was readily lost by permeabilizing RBL-2H3 cells. The results indicate, therefore, that treatment with dexamethasone leads to changes in receptor-coupling mechanisms that are either resistant to (i.e., NECA-mediated responses) or reversed by (i.e., Ag-mediated responses) cell permeabilization.[1]

References

 
WikiGenes - Universities