The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The role of 5-hydroxytryptamine 7 receptors in the phencyclidine-induced novel object recognition deficit in rats.

The role of 5-hydroxytryptamine (serotonin) (5-HT)(7) receptor antagonism in the actions of atypical antipsychotic drugs (APDs), e.g., amisulpride, clozapine, and lurasidone, if any, is uncertain. We examined the ability of 5-HT(7) receptor antagonism alone and as a component of amisulpride and lurasidone to reverse deficits in rat novel object recognition (NOR) produced by subchronic treatment with the N-methyl-d-aspartate receptor antagonist phencyclidine (PCP), and we examined the ability of supplemental 5-HT(7) antagonism to augment the inability of sulpiride, haloperidol, and (1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), a metabotropic glutamate receptor (mGluR) 2/3 agonist, which lack 5-HT(7) antagonism, to reverse the NOR deficit. The 5-HT(7) receptor antagonist, (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine (SB269970) (0.1-1 mg/kg) dose-dependently reversed PCP-induced NOR deficits. In addition, the ability of lurasidone (0.1 mg/kg) and amisulpride (3 mg/kg) to reverse this deficit was blocked by cotreatment with the 5-HT(7) receptor agonist (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin (AS19) (5-10 mg/kg), which did not affect NOR in naive rats. Sulpiride, a less potent 5-HT(7) antagonist than amisulpride, did not itself improve the PCP-induced NOR deficit. However, a subeffective dose of SB269970 (0.1 mg/kg) in combination with subeffective doses of lurasidone (0.03 mg/kg), amisulpride (1 mg/kg), or sulpiride (20 mg/kg), also reversed the PCP-induced NOR deficit. Pimavanserin, a 5-HT(2A) inverse agonist, LY379268, and haloperidol did not potentiate the ability of subeffective SB269970 to improve the NOR deficit. Furthermore, the mGluR2/3 antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid (LY341495), which blocks the effect of clozapine to reverse the NOR deficit, did not block the SB269970-induced amelioration of the NOR deficit. These results suggest 5-HT(7) antagonism may contribute to the efficacy of some atypical APDs in the treatment of cognitive impairment in schizophrenia and may itself have some benefit in this regard.[1]

References

 
WikiGenes - Universities