The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pseudohypophosphatasia: aberrant localization and substrate specificity of alkaline phosphatase in cultured skin fibroblasts.

We explored the biochemical basis for the disorder pseudohypophosphatasia (PsHYPT) in one patient by examining the substrate specificity and localization of alkaline phosphatase (ALP) in cultured dermal fibroblasts. Despite substantial ALP activity, in cell homogenates, toward the artificial substrate 4-methyl-umbelliferyl phosphate (4-MUP), there was a marked deficiency in ALP activity toward the natural substrates pyridoxal 5'-phosphate ( PLP) and phosphoethanolamine (PEA), indicating altered substrate specificity. Furthermore, although 4-MUP phosphatase (4-MUP-P'tase) activity was predominantly localized as an ecto-enzyme, the small amount of PLP phosphatase (PLP-P'tase) activity was intracellular. This differential localization was apparent in intact cells, since (1) brief acidification of the medium at 4 degrees C inactivated a majority of the 4-MUP-P'tase activity but only 15% of the PLP-P'tase activity (in contrast to greater than 85% inactivation of both in homogenates), (2) greater than 70% of the 4-MUP-P'tase activity but only 30% of the PLP-P'tase activity was released by phosphatidylinositol-specific phospholipase C ( PI-PLC) digestion, and (3) degradation of extracellular PLP was less than 35% of that of disrupted cells. Both 4-MUP- and PLP-P'tase activities were predominantly in a lipid-anchored form that could be converted to a soluble, lipid-free form by PI-PLC digestion. Our findings suggest that the clinical and biochemical presentation of this PSHPT patient results from the production of two aberrant ALP species. One form of ALP has appropriate ectoorientation but is preferentially deficient in activity toward natural substrates; the other ALP species has appropriate substrate specificity but is sequestered from substrates by its intracellular location.[1]

References

 
WikiGenes - Universities