The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae.

Aminoacyl-tRNA-protein transferases (Arg-transferases) catalyze post-translational conjugation of specific amino acids to the amino termini of acceptor proteins. A function of these enzymes in eukaryotes has been shown to involve the conjugation of destabilizing amino acids to the amino termini of short-lived proteins, these reactions being a part of the N-end rule pathway of protein degradation (Gonda, D. K., Bachmair, A., Wünning, I., Tobias, J. W., Lane, W. S., and Varshavsky, A. (1989) J. Biol. Chem. 264, 16700-16712). We have cloned the ATE1 gene of the yeast Saccharomyces cerevisiae which encodes arginyl-tRNA-protein transferase. ATE1 gives rise to a approximately 1.6-kilobase mRNA and codes for a 503-residue protein. Expression of the yeast ATE1 gene in Escherichia coli, which lacks Arg-transferases, was used to show that the ATE1 protein possesses the Arg-transferase activity. Null ate1 mutants are viable but lack the Arg-transferase activity and are unable to degrade those substrates of the N-end rule pathway that start with residues recognized by the Arg-transferase.[1]

References

  1. Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. Balzi, E., Choder, M., Chen, W.N., Varshavsky, A., Goffeau, A. J. Biol. Chem. (1990) [Pubmed]
 
WikiGenes - Universities