The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Reg1 protein regulates phosphorylation of all three snf1 isoforms but preferentially associates with the gal83 isoform.

The phosphorylation status of the Snf1 activation loop threonine is determined by changes in the rate of its dephosphorylation, catalyzed by the yeast PP1 phosphatase Glc7 in complex with the Reg1 protein. Previous studies have shown that Reg1 can associate with both Snf1 and Glc7, suggesting substrate binding as a mechanism for Reg1-mediated targeting of Glc7. In this study, the association of Reg1 with the three Snf1 isoforms was measured by two-hybrid analysis and coimmunoprecipitation. We found that Reg1 association with Snf1 occurred almost exclusively with the Gal83 isoform of the Snf1 complex. Nonetheless, Reg1 plays an important role in determining the phosphorylation status of all three Snf1 isoforms. We found that the rate of dephosphorylation for isoforms of Snf1 did not correlate with the amount of associated Reg1 protein. Functional chimeric β subunits containing residues from Gal83 and Sip2 were used to map the residues needed to promote Reg1 association with the N-terminal 150 residues of Gal83. The Gal83 isoform of Snf1 is the only isoform capable of nuclear localization. A Gal83-Sip2 chimera containing the first 150 residues of Gal83 was able to associate with the Reg1 protein but did not localize to the nucleus. Therefore, nuclear localization is not required for Reg1 association. Taken together, these data indicate that the ability of Reg1 to promote the dephosphorylation of Snf1 is not directly related to the strength of its association with the Snf1 complex.[1]

References

  1. Reg1 protein regulates phosphorylation of all three snf1 isoforms but preferentially associates with the gal83 isoform. Zhang, Y., McCartney, R.R., Chandrashekarappa, D.G., Mangat, S., Schmidt, M.C. Eukaryotic. Cell (2011) [Pubmed]
 
WikiGenes - Universities