The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Expression and characterization of human factor IX and factor IX-factor X chimeras in mouse C127 cells.

Human blood clotting factor IX, and two chimeric molecules of factor IX, in which the first epidermal growth factor-like domain or both epidermal growth factor-like domains have been replaced by that of human factor X, have been expressed in mouse C127 cells. The recombinants have been purified using a metal ion-dependent monoclonal antibody specific for residues 1-42 of human factor IX. All recombinant molecules are activated normally by human factor XIa in the presence of calcium ion. Activation of the factor IX recombinants by factor VIIa-tissue factor appears to be normal for the epidermal growth factor-1 exchange but considerably reduced for the construction containing both epidermal growth factor-like domains of factor X. The analysis of gamma-carboxyglutamic acid residues reveals that all of the purified recombinants are almost fully carboxylated. The extent of aspartic acid hydroxylation at residue 64 is 60% for all recombinants. The chimeric molecule with both epidermal growth factor-like domains from factor X has about 4% normal activity in the activated partial thromboplastin time assay. In contrast, the construct containing the first epidermal growth factor-like domain of factor X shows essentially normal clotting activity. Thus, it is unlikely that this domain is involved in a unique interaction with factor VIII.[1]

References

  1. Expression and characterization of human factor IX and factor IX-factor X chimeras in mouse C127 cells. Lin, S.W., Smith, K.J., Welsch, D., Stafford, D.W. J. Biol. Chem. (1990) [Pubmed]
 
WikiGenes - Universities