The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Structural analysis of d(GCAATTGC)2 and its complex with berenil by nuclear magnetic resonance spectroscopy.

The structures of d(GCAATTGC)2 and its complex with berenil in solution were analyzed by two-dimensional 1H NMR spectroscopy. Intra- and internucleotide nuclear Overhauser effect (NOE) connectivities demonstrate that the octanucleotide duplex is primarily in the B conformation. Binding with berenil stabilizes the duplex with respect to thermal denaturation by about 10 degrees C, based on the appearance of the imino proton signals. The berenil-d(GCAATTGC)2 system is in fast exchange on the NMR time scale. The two-dimensional NMR data reveal that berenil binds in the minor groove of d(GCAATTGC)2. The aromatic drug protons are placed within 5 A of the H2 proton of both adenines, the H1', H5', and H5" of both thymidines, and the H4', H5', and H5" of the internal guanosine. The amidine protons on berenil are also close to the H2 proton of both adenines. The duplex retains an overall B conformation in the complex with berenil. At 18 degrees C, NOE contacts at longer mixing times indicate the presence of end-to-end association both in the duplex alone and also in its complex with berenil. These intermolecular contacts either vanished or diminished substantially at 45 degrees C. Two molecular models are proposed for the berenil-(GCAATTGC)2 complex; one has hydrogen bonds between the berenil amidine protons and the carbonyl oxygen, O2, of the external thymines, and the other has hydrogen bonds between the drug amidine protons and the purine nitrogen, N3, of the internal adenines. Quantitative analysis of the NOE data favors the second model.[1]

References

 
WikiGenes - Universities