The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells.

Phosphotyrosine-containing proteins are minor components of normal cells which appear to be associated primarily with the regulation of cellular metabolism and growth. The insulin receptor is a tyrosine-specific protein kinase, and one of the earliest detectable responses to insulin binding is activation of this kinase and autophosphorylation of its beta-subunit. Tyrosine autophosphorylation activates the phosphotransferase in the beta-subunit and increases its reactivity toward tyrosine phosphorylation of other substrates. When incubated in vitro with [gamma-32P]ATP and insulin, the purified insulin receptor phosphorylates various proteins on their tyrosine residues. However, so far no proteins other than the insulin receptor have been identified as undergoing tyrosine phosphorylation in response to insulin in an intact cell. Here, using anti-phosphotyrosine antibodies, we have identified a novel phosphotyrosine-containing protein of relative molecular mass (Mr) 185,000 (pp185) which appears during the initial response of hepatoma cells to insulin binding. In contrast to the insulin receptor, pp185 does not adhere to wheat-germ agglutininagarose or bind to anti-insulin receptor antibodies. Phosphorylation of pp185 is maximal within seconds after exposure of the cells to insulin and exhibits a dose-response curve similar to that of receptor autophosphorylation, suggesting that this protein represents the endogenous substrate for the insulin receptor kinase.[1]

References

 
WikiGenes - Universities