The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evidence that receptor aggregation may play a role in transmembrane signaling through the insulin-like growth factor-I receptor.

alpha IR-3 is a mouse monoclonal antibody that binds to an epitope on the human insulin-like growth factor I (IGF-I) receptor and inhibits [125I]IGF-I binding to this receptor on human skin fibroblasts (HSF) and Hep G2 human hepatoblastoma cells. Unlike the natural ligand (IGF-I), neither intact alpha IR-3 nor its monovalent Fab fragment stimulate aminoisobutyric acid (AIB) uptake in HSF, and both competitively antagonize IGF-I's ability to produce this effect. However, when HSF are incubated with alpha IR-3 or its Fab' fragment, subsequent exposure to anti-mouse immunoglobulin G (IgG) produces a potent stimulation of AIB uptake. Anti-Mouse IgG by itself does not effect AIB uptake. alpha IR-3 also antagonizes IGF-I's ability to stimulate glycogen synthesis in Hep G2 cells. As with AIB uptake in HSF, the combination of alpha IR-3 followed by anti-mouse IgG stimulates glycogen synthesis in Hep G2 cells to the same extent as that produced by IGF-I. The triggering of these two biological effects depends on the concentration of both alpha IR-3 and anti-mouse IgG. These results are consistent with the possibility that local aggregation or cross-linking of IGF-I receptors plays an important role in transmembrane signaling by this receptor.[1]

References

 
WikiGenes - Universities