The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Structure of a major yolk glycoprotein and its processing pathway by limited proteolysis are conserved in echinoids.

To study the fate of the yolk glycoproteins found in eggs and embryos of the sea urchin, Strongylocentrotus purpuratus, a polyclonal antibody to a 90-kDa polymannose glycoprotein found in the embryo was prepared. Immunoblot analysis of total proteins over the course of development showed that this antibody recognized a family of glycoproteins. Concomitant with the disappearance of the major 160-kDa yolk glycoprotein of the egg during embryogenesis, glycoproteins with a lower molecular mass appeared. These glycoproteins (115, 108, 90, 83, and 68 kDa) were purified from S. purpuratus and analyzed by limited proteolysis and peptide mapping. This analysis revealed that these glycoproteins were cleavage products derived from the major yolk glycoprotein. The antibody to the 90-kDa glycoprotein in S. purpuratus embryos was used to identify a homologous set of yolk glycoproteins with similar molecular masses in the embryos of three other species in the class Echinoidea: Arbacia punctulata, Lytechinus pictus, and Dendraster excentricus. However, eggs from other echinoderm classes and from Xenopus laevis, Drosophila melanogaster, and the chicken did not contain any cross-reactive molecules. Cross-reactivity within the class Echinoidea was not due to a common carbohydrate epitope, because the antibody recognized the glycoproteins even after the N-linked carbohydrate side chains were enzymatically removed. The major yolk glycoprotein (160-170 kDa) from each of the three sea urchin species was purified and analyzed. Comparison of the physical and chemical properties of these glycoproteins revealed striking similarities in pI and in amino acid and monosaccharide composition. The results of peptide mapping also supported the conclusion that the 160- to 170-kDa glycoproteins from the four echinoids are structurally homologous glycoproteins containing N-linked polymannose chains. Immunolocalization by electron microscopy in S. purpuratus showed that the yolk glycoproteins remained within the yolk platelet throughout development, and that externalization of the 160-kDa glycoprotein or its cleavage products was not detectable.[1]


WikiGenes - Universities