The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Triglyceride and cholesteryl ester hydrolysis in a cell culture model of smooth muscle foam cells.

Cultured rabbit aortic smooth muscle cells were converted to foam cells by exposure to sonicated lipid droplets of defined composition using an inverted culture technique. Uptake of the lipid droplets by the cells was shown to be dependent on the time of exposure to the droplets and on the mass of droplets presented to the cells. A comparison of the hydrolysis of triolein and cholesteryl oleate by cells that had been exposed to isotropic lipid droplets containing equimolar amounts of the two lipids revealed that the rate of hydrolysis of triglyceride was 3 to 4 times faster than that for cholesteryl ester. The hydrolysis of cholesteryl oleate from cells loaded with the isotropic droplets was approximately 1.5 times as fast as that from cells loaded with anisotropic droplets containing only cholesteryl oleate. A comparison of the hydrolysis of cholesteryl ester in the presence and absence of Sandoz compound 58-035, an inhibitor of acyl CoA:cholesterol acyl transferase, by cells loaded with isotropic droplets showed that about 30% of the free cholesterol liberated by hydrolysis was reesterified regardless of the mass of free cholesterol. We conclude that cultured smooth muscle cells have a greater capacity to hydrolyze triglyceride than cholesteryl ester, and that the rate of hydrolysis of cholesteryl ester appears to be related to the physical state of the droplet in which the cholesteryl ester is stored. In addition, it appears that the smooth muscle cells have a cholesteryl ester cycle that is inefficient in the reesterification of excess free cholesterol.[1]

References

 
WikiGenes - Universities