The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one.

In mammalian cells, low density lipoprotein (LDL) is bound, internalized, and delivered to lysosomes where LDL-cholesteryl esters are hydrolyzed to unesterified cholesterol. The mechanisms of intracellular transport of LDL-cholesterol from lysosomes to other cellular sites and LDL-mediated regulation of cellular cholesterol metabolism are unknown. We have identified a pharmacological agent, U18666A (3-beta-[2-diethyl-amino)ethoxy]androst-5-en-17-one), which impairs the intracellular transport of LDL-derived cholesterol in cultured Chinese hamster ovary (CHO) cells. U18666A blocks the ability of LDL-derived cholesterol to stimulate cholesterol esterification, and to suppress 3-hydroxy-3-methylglutaryl-coenzyme A reductase and LDL receptor activities. However, U18666A does not impair 25-hydroxycholesterol-mediated regulation of these processes. In addition, U18666A impedes the ability of LDL-derived cholesterol to support the growth of CHO cells. However, U18666A has only moderate effects on growth supported by non-lipoprotein cholesterol. LDL binding, internalization, and lysosomal hydrolysis of LDL-cholesteryl esters are not affected by the presence of U18666A. Analysis of intracellular cholesterol transport reveals that LDL-derived cholesterol accumulates in the lysosomes of U18666A-treated CHO cells which results in impaired movement of LDL-derived cholesterol to other cell membranes.[1]

References

 
WikiGenes - Universities