The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Stimulation of high-affinity GTPase by trypsin and trypsin-like proteinases in membranes of human platelets.

The influence of various proteinases on GTP hydrolysis was studied in membranes of human platelets. Of the proteinases examined, trypsin, acrosin and a recently described trypsin-like proteinase from bovine sperm, but not chymotrypsin, increased GTP hydrolysis. Similar to what was described previously for hormone-like agents, the stimulation of GTP hydrolysis by the proteinases was only observed at low GTP concentrations, with apparent Km values of 0.2-0.3 microM-GTP. Stimulation of the high-affinity GTPase by the proteinases occurred without apparent lag phase and was constant over a long period of incubation. The proteinase inhibitors leupeptin and soya-bean trypsin inhibitor blocked the stimulation of GTP hydrolysis, but did not reverse the effect of the proteinases. Treatment of platelet membranes with N-ethylmaleimide, which eliminates Gi-protein (inhibitory guanine-nucleotide-binding protein)-related GTPase stimulation by adrenaline, decreased stimulation of GTP hydrolysis by the proteinases only partially. Activation of GTP hydrolysis by the proteinases was partially additive with that caused by adrenaline, whereas thrombin stimulation was not increased further. The data indicate that, similarly to the proteinase thrombin, trypsin and trypsin-like proteinases can activate GTP-hydrolysing protein(s) that exhibit high affinity for GTP in platelet membranes. It is suggested that the proteinases interact in platelet membranes with a receptor site similar to that used by thrombin and that the observed GTPase stimulation is a reflection of a proteinase-receptor interaction with a guanine-nucleotide-binding regulatory protein.[1]

References

 
WikiGenes - Universities