The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Receptor-binding profiles of neuroleptics.

Dopamine-receptor blockade seems to be a prominent effect of neuroleptics. Blockade of other receptors might, however, contribute to the therapeutic effect. A series of neuroleptics have been tested for affinity to DA D-1 and D-2 receptors, serotonin receptors (S2), alpha-adrenoceptors ( alpha 1), histamine receptors (H1), and muscarinic cholinergic receptors. According to the affinity to DA D-1 and D-2 receptors, neuroleptics can be divided into different groups. Thioxanthenes have affinity for both D-1 and D-2 receptors; phenothiazines have affinity for D-2 receptors and considerably lower affinity for D-1 receptors; and butyrophenones, diphenylbutylpiperidines, and benzamides have affinity only for D-2 receptors. Concerning affinity to other receptors the only consistent finding is affinity for S2 receptors. The clinical significance of these findings is speculative. In several behavioral tests the D-1/D-2 classification is also observed, and it is suggested that D-1-receptor activation is responsible for dyskinesia, and that thioxanthenes - due to their D-1 receptor blocking effect-induce less dyskinesia than other neuroleptics.[1]

References

  1. Receptor-binding profiles of neuroleptics. Hyttel, J., Larsen, J.J., Christensen, A.V., Arnt, J. Psychopharmacology. Supplementum. (1985) [Pubmed]
 
WikiGenes - Universities