The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Lipoproteins alter the catalytic behavior of the platelet-activating factor acetylhydrolase in human plasma.

Platelet-activating factor (PAF) has been implicated as a mediator of inflammation, allergy, shock, and thrombosis. A specific degradative enzyme, PAF acetylhydrolase (EC 3.1.1.47), is found in plasma and could regulate the concentration of PAF in blood. In plasma, 70% of the PAF acetylhydrolase is found with low density lipoprotein (LDL), and the remainder is in high density lipoprotein (HDL). In previous studies we found that with subsaturating concentrations of PAF the activity in LDL seemed to be the relevant one; e.g., depletion of LDL slowed degradation of PAF, while removal of HDL accelerated the degradation slightly. We have pursued this observation by using plasma from humans with lipoprotein mutations. In abetalipoproteinemia, all of the PAF acetylhydrolase activity was in HDL, whereas in Tangier disease all of the activity was in LDL. In both conditions the total activity measured in an optimized assay was normal or increased. However, when we measured the t1/2 of PAF in plasma, we found that it was prolonged in subjects with abetalipoproteinemia compared to normal controls. Conversely, the t1/2 in Tangier plasma was shortened. We next demonstrated that the PAF acetylhydrolase in HDL was recognized by an antibody to the enzyme purified from LDL, establishing that the enzyme in the two particles is the same protein. Finally, we inactivated the PAF acetylhydrolase in isolated lipoprotein particles and then reconstituted them with enzyme from the opposite particle. The reconstituted particles were used to measure the t1/2 of PAF, and we again found that the LDL particle was more efficient. We conclude that the lipoprotein environment of the PAF acetylhydrolase markedly influences its catalytic behavior. This may be important in pathophysiology and will complicate attempts to assess the role of this enzyme in such circumstances.[1]

References

  1. Lipoproteins alter the catalytic behavior of the platelet-activating factor acetylhydrolase in human plasma. Stafforini, D.M., Carter, M.E., Zimmerman, G.A., McIntyre, T.M., Prescott, S.M. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
 
WikiGenes - Universities