The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Identification of a trpG-related glutamine amide transfer domain in Escherichia coli GMP synthetase.

An improved method was developed to align related protein sequences and search for homology. A glutamine amide transfer domain was identified in an NH2-terminal segment of GMP synthetase from Escherichia coli. Amino acid residues 1-198 in GMP synthetase are homologous with the glutamine amide transfer domain in trpG X D- encoded anthranilate synthase component II- anthranilate phosphoribosyltransferase and the related pabA-encoded p-aminobenzoate synthase component II. This result supports a model for gene fusion in which a trpG-related glutamine amide transfer domain was recruited to augment the function of a primitive NH3-dependent GMP synthetase. Sequence analyses emphasize that glutamine amide transfer domains are thus far found only at the NH2 terminus of fused proteins. Two rules are formulated to explain trpG and trpG-related fusions. (i) trpG and trpG-related genes must have translocated immediately up-stream of genes destined for fusion in order to position a glutamine amide transfer domain at the NH2 terminus after fusion. (ii) trpG and trpG-related genes could not translocate adjacent to a regulatory region at the 5' end of an operon. These rules explain known trpG-like fusions and explain why trpG and pabA are not fused to trpE and pabB, respectively. Alignment searches of GMP synthetase with two other enzymes that bind GMP, E. coli amidophosphoribosyltransferase and human hypoxanthine-guanine phosphoribosyltransferase, suggest a structurally homologous segment which may constitute a GMP binding site.[1]


  1. Identification of a trpG-related glutamine amide transfer domain in Escherichia coli GMP synthetase. Zalkin, H., Argos, P., Narayana, S.V., Tiedeman, A.A., Smith, J.M. J. Biol. Chem. (1985) [Pubmed]
WikiGenes - Universities