The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants.

The recQ gene of Escherichia coli K12 was subcloned from plasmid pKO1 (Oeda et al. 1981) by monitoring the capacity of the resulting recombinant plasmids partially to reverse the increased ultraviolet (UV) sensitivity of a recF143 recQ1 double mutant. We were able to trace this complementation activity to a 3.4 kilobase (kb) SalI-PvuII fragment. Furthermore, analysis of the Tn3 insertion mutations that abolished the complementation revealed the exclusive localisation of such insertions in the same 3.4 kb segment. This segment was situated about 4 kb clockwise from corA on the chromosome, a result consistent with the transductional data previously reported. In addition, a comparison of our restriction endonuclease cleavage map with the published data has placed recQ between pldA and pldB. When relocated to the recQ site on the chromosome, the recQ::Tn3 mutations conferred partial resistance to thymineless death (TLD) or, in the case of a recBC sbcB background, recombination deficiency and increased UV sensitivity. This has provided the firm evidence that both the TLD resistance and the deficiency in the RecF recombination pathway result from loss of the functional recQ gene. We also identified the recQ gene product as a 74 kilodalton polypeptide by using the maxicell technique.[1]

References

  1. The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Nakayama, K., Irino, N., Nakayama, H. Mol. Gen. Genet. (1985) [Pubmed]
 
WikiGenes - Universities