The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Intracellular trafficking of cell surface sialoglycoconjugates.

Recent reports have suggested that the majority of the molecular traffic through the Golgi apparatus is comprised of recycling, rather than newly synthesized, molecules. To evaluate the importance of this recycling pathway in greater detail, we examined the internalization and recycling of cell surface glycoproteins on EL-4 cells, a murine T-cell lymphoma, using sialic acids as covalent markers. Sialic acids were removed from the surface of living cells by exhaustive treatment with Vibrio cholerae sialidase at 4 degrees C and shown to be derived primarily from glycoproteins (93%), with only a small amount from glycolipids (7%). Cells were recultured at 37 degrees C over time and monitored for the resialylation of the cell surface using a sensitive high pressure liquid chromatography adaptation of the thiobarbituric acid assay for sialic acids. The return of sialic acid to the cell surface was found to be contingent upon de novo protein synthesis indicating that the bulk of plasma membrane sialoglycoconjugates do not recycle to an endogenous sialyltransferase-containing compartment for oligosaccharide reprocessing. Identical results were found for K562 cells, a human erythroleukemia cell line. The movement of specific glycoproteins was followed using the enzyme rat liver alpha 2-6Gal beta 1-4GlcNAc sialyltransferase together with CMP-[3H]NeuAc as an impermeant probe of the cell surface. Surface sialoglycoproteins were internalized slowly, a process unaffected by cycloheximide treatment. Only a few of these internalized glycoproteins were found to return to a trans-Golgi compartment followed by recycling to the cell surface. Taken together, these data indicate that the majority of replacement of sialic acids on the cell surface is due to de novo synthesis of glycoproteins and that only a small number of glycoproteins recycle through a trans-Golgi compartment.[1]

References

  1. Intracellular trafficking of cell surface sialoglycoconjugates. Reichner, J.S., Whiteheart, S.W., Hart, G.W. J. Biol. Chem. (1988) [Pubmed]
 
WikiGenes - Universities