Binding of [3H]hemicholinium-3 to the high-affinity choline transporter in electric organ synaptosomal membranes.
Sodium-dependent binding of [3H]hemicholinium-3 was observed to be 10-fold higher with presynaptic membranes from the electric organ than with electroplaque membranes and this binding site copurified with synaptosomal membranes. The KD for specific [3H]hemicholinium-3 binding was found to be 31 +/- 4 nM and the Bmax, 5.0 +/- 0.2 pmol/mg protein; a Ki of 16 nM was estimated for hemicholinium-3 as a competitive inhibitor of high-affinity choline transport in electric organ synaptosomes. Choline and choline analogues were equally potent as inhibitors of [3H]choline uptake and [3H]hemicholinium-3 binding. Tubocurarine and oxotremorine also inhibited uptake and binding, but carbachol was without effect in both tests. These findings suggest that [3H]hemicholinium binds to the high-affinity choline transporter present at the cholinergic nerve terminal membrane. A comparison of maximal velocities for choline transport and the maximal number of hemicholinium-3 binding sites indicated that the high-affinity choline transporter has an apparent turnover number of about 3s-1 at 20 degrees C under resting conditions. The high transport rates observed in electric organ synaptosomes are likely due to the high density of high-affinity choline transporters in this tissue, estimated on the basis of [3H]hemicholinium-3 binding to be of the order of 100/micron2 of synaptosomal membrane.[1]References
- Binding of [3H]hemicholinium-3 to the high-affinity choline transporter in electric organ synaptosomal membranes. O'Regan, S. J. Neurochem. (1988) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









