The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A yeast mutant conditionally defective only for reentry into the mitotic cell cycle from stationary phase.

We report the isolation of a cold-sensitive mutant of the yeast Saccharomyces cerevisiae that is conditionally defective only for reentry into the mitotic cell cycle from stationary phase. Although actively dividing mutant cells shifted to the restrictive temperature continued to divide, stationary-phase mutant cells placed in fresh medium at the restrictive temperature failed to divide or even perform the cell cycle regulatory step "start" but did lose the characteristic stationary-phase properties of thermotolerance, accumulation of storage carbohydrates, and resistance to cell-wall-lytic enzymes. Order-of-function analysis indicated that the cold-sensitive defect blocked cells during reentry before start of the first mitotic cell cycle. Genetic analysis showed that the mutant phenotype is due to the interaction between two mutations, a cold-sensitive mutation gcs1 and a suppressor mutation sed1. These mutations thus provide the genetic basis for further analysis of stationary phase and the G0 state.[1]

References

  1. A yeast mutant conditionally defective only for reentry into the mitotic cell cycle from stationary phase. Drebot, M.A., Johnston, G.C., Singer, R.A. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
 
WikiGenes - Universities