The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Coregulation of NADPH oxidase activation and phosphorylation of a 48-kD protein(s) by a cytosolic factor defective in autosomal recessive chronic granulomatous disease.

The mechanisms regulating activation of the respiratory burst enzyme, NADPH oxidase, of human neutrophils (PMN) are not yet understood, but protein phosphorylation may play a role. We have utilized a defect in a cytosolic factor required for NADPH oxidase activation observed in two patients with the autosomal recessive form of chronic granulomatous disease (CGD) to examine the role of protein phosphorylation in activation of NADPH oxidase in a cell-free system. NADPH oxidase could be activated by SDS in reconstitution mixtures of cytosolic and membrane subcellular fractions from normal PMN, and SDS also enhanced phosphorylation of at least 16 cytosolic and 14 membrane-associated proteins. However, subcellular fractions from CGD PMN plus SDS expressed little NADPH oxidase activity, and phosphorylation of a 48-kD protein(s) was selectively defective. The membrane fraction from CGD cells could be activated for NADPH oxidase when mixed with normal cytosol and phosphorylation of the 48-kD protein(s) was restored. In contrast, the membrane fraction from normal cells expressed almost no NADPH oxidase activity when mixed with CGD cytosol, and phosphorylation of the 48-kD protein(s) was again markedly decreased. Protein kinase C (PKC) activity in PMN from the two patients appeared to be normal, suggesting that a deficiency of PKC is not the cause of the defective 48-kD protein phosphorylation and that the cytosolic factor is not PKC. These results demonstrate that the cytosolic factor required for activation of NADPH oxidase also regulates phosphorylation of a specific protein, or family of proteins, at 48 kD. Although the nature of this protein(s) is still unknown, it may be related to the functional and phosphorylation defects present in CGD PMN and to the activation of NADPH oxidase in the cell-free system.[1]

References

  1. Coregulation of NADPH oxidase activation and phosphorylation of a 48-kD protein(s) by a cytosolic factor defective in autosomal recessive chronic granulomatous disease. Caldwell, S.E., McCall, C.E., Hendricks, C.L., Leone, P.A., Bass, D.A., McPhail, L.C. J. Clin. Invest. (1988) [Pubmed]
 
WikiGenes - Universities