The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Interaction of hemopexin with Sn-protoporphyrin IX, an inhibitor of heme oxygenase. Role for hemopexin in hepatic uptake of Sn-protoporphyrin IX and induction of mRNA for heme oxygenase.

Sn-protoporphyrin IX (SnPP), an inhibitor of heme oxygenase and a potential therapeutic agent for neonatal hyperbilirubinemia, is bound tightly by hemopexin. The apparent dissociation constant (Kd) at pH 7.4 is 0.25 +/- 0.15 microM, but estimation of the Kd for the SnPP-hemopexin complex is hampered by the fact that at physiological pH SnPP exists as monomers and dimers, both of which are bound by hemopexin. SnPP is readily displaced from hemopexin by heme (Kd less than 1 pM). The hemopexin-SnPP interaction, like that of heme-hemopexin, is dependent on the histidine residues of hemopexin. However, as expected from the differences in the coordination chemistries of tin and iron, the stability of the histidyl-metalloporphyrin complex is lower for SnPP-hemopexin than for mesoheme-hemopexin. Nevertheless, when SnPP binds to hemopexin, certain of the ligand-induced changes in the conformation of hemopexin which increase the affinity of the protein for its receptor are produced. Binding of SnPP produces the conformational change in hemopexin which protects the hinge region of hemopexin from proteolysis, but SnPP does not produce the characteristic increase in the ellipticity of hemopexin at 231 nm that heme does. Competition experiments confirmed that human serum albumin (apparent Kd = 4 +/- 2 microM) has a significantly lower affinity for SnPP than does hemopexin. Appreciable amounts of SnPP (up to 35% in adults and 20% in neonates) would be bound by hemopexin in the circulation, and the remainder of SnPP would be associated with albumin due to the latter's high concentration in serum. Essentially no non-protein-bound SnPP is present. Importantly, SnPP-hemopexin binds to the hemopexin receptor on mouse hepatoma cells with an affinity comparable to that of heme-hemopexin and treatment of the hepatoma cells with SnPP-hemopexin causes a rapid increase in the steady state level of heme oxygenase messenger RNA. These results show that hemopexin participates in the transport of SnPP to heme oxygenase and in its regulation by SnPP.[1]

References

 
WikiGenes - Universities