The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Tissue-specific regulation of avian vitamin D-dependent calcium-binding protein 28-kDa mRNA by 1,25-dihydroxyvitamin D3.

We have studied the regulation, by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), of vitamin D-dependent calcium-binding protein (28-kDa CaBP) mRNA in chick tissues in vivo. Northern analysis of poly(A)+ RNA was carried out using, as hybridization probes, synthetic oligonucleotides complementary to chick 28-kDa CaBP mRNA. In vitamin D-deficient chicks, 28-kDa CaBP mRNA was virtually undetectable in intestine, was clearly detectable in kidney, and present at the highest levels in cerebellum. After a single intravenous dose of 500 ng of 1,25-(OH)2D3, intestinal 28-kDa CaBP mRNA levels were increased 50-fold, kidney levels were increased 4-fold, and cerebellum levels were unchanged. Increased levels of 28-kDa CaBP mRNA were appreciated 2 h after induction and were maximal at 12 h. Pretreatment of vitamin D-deficient chicks with actinomycin D had little effect on the acute phase of the 1,25-(OH)2D3 induction of 28-kDa CaBP mRNA in intestine but blunted the induction in kidney. Pretreatment with cycloheximide caused a delayed response to 1,25-(OH)2D3 in the intestine, although control (noninhibition) levels of 28-kDa CaBP mRNA were present 12 h after hormone administration. By contrast, in the kidney, cycloheximide pretreatment resulted in an increased steady-state (vitamin D-deficient) level of 28-kDa CaBP mRNA, but completely abolished the induction of 1,25-(OH)2D3. Our studies indicate that, whereas 1,25-(OH)2D3 does not regulate 28-kDa CaBP mRNA levels in the brain, the hormone modulates 28-kDa CaBP gene expression in intestine and kidney in a tissue-specific manner, by acting through both transcriptional and post-transcriptional mechanisms.[1]

References

  1. Tissue-specific regulation of avian vitamin D-dependent calcium-binding protein 28-kDa mRNA by 1,25-dihydroxyvitamin D3. Clemens, T.L., McGlade, S.A., Garrett, K.P., Horiuchi, N., Hendy, G.N. J. Biol. Chem. (1988) [Pubmed]
 
WikiGenes - Universities