The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit.

A synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo acetylcholine receptor alpha subunit, which contains the adjacent cysteine residues at positions 192 and 193, was recently shown by us to contain the essential elements for alpha-bungarotoxin binding. In the present study, we have used Sepharose-linked peptides for quantitative analysis of the cholinergic binding properties of this and other synthetic peptides. Sepharose-linked peptides corresponding to residues 1-20, 126-143, 143-158, 169-181, 185-196, 193-210, and 394-409 of the alpha subunit of Torpedo acetylcholine receptor, as well as a peptide corresponding to residues 185-196 of the alpha subunit of human acetylcholine receptor, were tested for their toxin-binding capacity. Of these immobilized peptides, only peptide 185-196 of the Torpedo acetylcholine receptor bound toxin significantly, thus verifying that this synthetic peptide contains essential components of the receptor toxin-binding site. Analysis of toxin binding to the peptide yielded a dissociation constant of 3.5 X 10(-5) M. This binding was inhibited by various cholinergic ligands. The inhibition potency obtained was alpha-bungarotoxin greater than Naja naja siamensis toxin greater than d-tubocurarine greater than decamethonium greater than acetylcholine greater than carbamoylcholine. This pharmacological profile resembles that of the nicotinic acetylcholine receptor and therefore suggests that the synthetic dodecapeptide also includes the neurotransmitter binding site. Reduction and carboxymethylation of the cysteine residues on peptide 185-196 inhibit its capacity to bind toxin, demonstrating that an intact disulfide is required for toxin binding. A decrease in toxin binding was also obtained following chemical modification of the tryptophan residue at position 187, thus implying its possible involvement in toxin binding. The failure to detect binding of toxin to the corresponding human sequence 185-196, in which the tryptophan residue is replaced by serine, supports this hypothesis.[1]

References

  1. Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit. Neumann, D., Barchan, D., Fridkin, M., Fuchs, S. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
 
WikiGenes - Universities