Mapping of proctolinlike immunoreactivity in the nervous systems of lobster and crayfish.
Whole-mount immunocytochemical techniques have been used to map candidate proctolin-containing cells in the central nervous systems of the lobster, Homarus americanus, and the crayfish, Procambarus clarkii. Proctolinlike immunoreactivity was detected in cell bodies and neuropil regions in all central ganglia, and immunoreactive axons were detected in most interganglionic connectives and nerve roots. Cell body staining was confined to fewer than 2% of all cells. Immunoreactive neurons include motoneurons, sensory neurons, neurosecretory cells, and interneurons. Colocalization of the proctolinlike antigen with other neurotransmitters was indicated in a number of cases. Many aspects of the distribution of immunoreactivity were similar in lobster and crayfish; however, staining differences were detected in a number of identified neurons and neural groups, including neurons that innervate the pericardial organs and hindgut motoneurons. Further studies of such neurons might provide interesting clues about the physiological functions of proctolin and the evolution of peptide transmission.[1]References
- Mapping of proctolinlike immunoreactivity in the nervous systems of lobster and crayfish. Siwicki, K.K., Bishop, C.A. J. Comp. Neurol. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









