The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Crystal structure of muconate lactonizing enzyme at 3 A resolution.

The crystal structure of muconate lactonizing enzyme has been solved at 3 A resolution, and an unambiguous alpha-carbon backbone chain trace made. The enzyme contains three domains; the central domain is a parallel-stranded alpha-beta barrel, which has previously been reported in six other enzymes, including triose phosphate isomerase and pyruvate kinase. One novel feature of this enzyme is that its alpha-beta barrel has only seven parallel alpha-helices around the central core of eight parallel beta-strands; all other known alpha-beta barrels contain eight such helices. The N-terminal (alpha + beta) and C-terminal domains cover the cleft where the eighth helix would be. The active site of muconate lactonizing enzyme has been found by locating the manganese ion that is essential for catalytic activity, and by binding and locating an inhibitor, alpha-ketoglutarate. The active site lies in a cleft between the N-terminal and barrel domains; when the active sites of muconate lactonizing enzyme and triose phosphate isomerase are superimposed, barrel-strand 1 of triose phosphate isomerase is aligned with barrel-strand 3 of muconate lactonizing enzyme. This implies that structurally homologous active-site residues in the two enzymes are carried on different parts of the primary sequence; the ancestral gene would had to have been transposed during its evolution to the modern proteins, which seems unlikely. Therefore, these two enzymes may be related by convergent, rather than divergent, evolution.[1]

References

  1. Crystal structure of muconate lactonizing enzyme at 3 A resolution. Goldman, A., Ollis, D.L., Steitz, T.A. J. Mol. Biol. (1987) [Pubmed]
 
WikiGenes - Universities