Phycobiliprotein-bilin linkage diversity. II. Structural studies on A- and D-ring-linked phycoerythrobilins.
The discovery that the phycocyanobilin group attached to Cys-155 of the beta subunit of C-phycocyanin is D-ring linked (Bishop, J. E., Lagarias, J. C., Nagy, J. O., Schoenleber, R. W., Rapoport, H., Klotz, A. V., and Glazer, A. N. (1986) J. Biol. Chem. 261, 6790-6796) prompted examination of the linkage mode for phycoerythrobilin (PEB) groups attached at the corresponding position in other biliproteins. Appropriate small peptides were obtained by exhaustive enzymatic digestion of Porphyridium cruentum R-phycocyanin (peptide R-PC beta-2TP PEB) and B-phycoerythrin (peptide B-PE beta-2TP PEB). These peptides had the following structures R-PC beta-2TP PEB Gly-Asp-Cys(PEB)-Ser-Ser B-PE beta-2TP PEB Cys(PEB)-Thr-Ser. The spectroscopic and chemical properties of these peptides were compared with those of P. cruentum B-phycoerythrin peptide alpha-1 PEB, Cys(PEB)-Tyr-Arg, in which the bilin is A-ring linked (Schoenleber, R. W., Leung, S.-L., Lundell, D. J., Glazer, A. N., and Rapoport, H. (1983) J. Am. Chem. Soc. 105, 4072-4076). The PEB groups in peptides R-PC beta-2TP PEB and B-PE beta-2TP PEB were shown to be D-ring linked on the basis of the following criteria. Secondary ion mass spectrometry showed the bilins in these peptides and in alpha-1 PEB to have the same mass. The 18'-CH3, 18'-H, and 15-H resonances in the 1H NMR spectra of R-PC beta-2TP PEB and B-PE beta-2TP PEB appear significantly upfield from the corresponding thioether-linked ring A resonances seen in the spectrum of peptide alpha-1 PEB. The CD spectra of the two former peptides showed a strong positive Cotton effect at 300 nm. Such a Cotton effect is absent from the CD spectrum of peptide alpha-1 PEB and those of other A-ring-linked PEB peptides. Refluxing in methanol led to a near-quantitative release of PEB from alpha-1 PEB but no release from R-PC beta-2TP PEB and less than 20% release from B-PE beta-2TP PEB. In conjunction with earlier studies, these results show that distinctive amino acid sequences are found about the attachment sites for A-ring-linked, D-ring-linked, and dilinked (A- and D-ring-linked) bilins on the alpha and beta subunits of cyanobacterial and red algal phycobiliproteins and that the mode of linkage can be correctly predicted from inspection of the amino acid sequence.[1]References
- Phycobiliprotein-bilin linkage diversity. II. Structural studies on A- and D-ring-linked phycoerythrobilins. Klotz, A.V., Glazer, A.N., Bishop, J.E., Nagy, J.O., Rapoport, H. J. Biol. Chem. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg