The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of coenzyme aldimine proton in 1H NMR spectra of pyridoxal 5'-phosphate dependent enzymes: aspartate aminotransferase isoenzymes.

The pyridoxal form of the alpha subform of cytosolic aspartate aminotransferase (EC 2.6.1.1) is fully active and binds pyridoxal 5'-phosphate via an aldimine formation with Lys-258 whereas the gamma subform is virtually inactive and lacks the aldimine linkage. Comparison of 1H NMR spectra between the alpha and gamma subforms suggested that peak 1 of the alpha subform at 8.89 ppm contains a resonance assignable to the internal aldimine 4'-H. Reaction with a reagent that cleaves or modifies the internal aldimine bond [(amino-oxy)acetate, L-cysteinesulfinate, NH2OH, NaBH4, or NaCNBH3] caused the disappearance of a resonance line at 8.89 ppm that possessed a broad line width and corresponded in intensity to a single proton. These reagents were also used successfully for the identification of the aldimine 4'-H resonance in the mitochondrial isoenzyme. In contrast to the cytosolic isoenzyme whose resonance for the 4'-H did not show any detectable change in chemical shift with pH, the corresponding resonance in the mitochondrial isoenzyme exhibited pH-dependent chemical shift change (8.84 ppm at pH 5 and 8.67 ppm at pH 8) with a pK value of 6.3, reflecting the interisozymic difference in the microenvironment provided for the internal aldimine. Validity of the signal assignment was further shown by the two findings: the resonance assigned to the 4'-H emerged upon conversion of the pyridoxamine into the pyridoxal form, and the resonance appeared upon reconstitution of the apoenzyme with [4'-1H]pyridoxal phosphate but not with [4'-2H]pyridoxal phosphate.[1]

References

 
WikiGenes - Universities