The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of ammonium (methylammonium)/potassium antiport in Escherichia coli.

The energetics of ammonium ion transport by Escherichia coli have been studied using [14C]methylammonium as a substrate. Rapid assays for uptake allowed kinetic parameters (CH3NH3+ Km = 36 microM; Vmax = 4 nmol X s-1 X mg-1 to be determined in the absence of CH3NH3+ metabolism. Cells cultured in media containing 1 mM NH4+ failed to express CH3NH3+ transport activity. Methylammonium accumulated at levels which were 100-fold higher than those of the medium. This accumulation was dependent upon the addition of glucose or pyruvate. The entry of CH3NH3+ supported by glucose oxidation in an F1F0-ATPase-deficient mutant was blocked by uncoupler. Transport by wild-type cells under similar conditions was significantly inhibited by arsenate. Thus, CH3NH3+ uptake requires both ATP and an electrochemical H+ gradient. This transport activity was lost upon exposure of E. coli to osmotic shock, but could be recovered by incubation of shocked cells with boiled shock fluid or with glucose plus K+ in the presence of chloramphenicol. Similar reconstitution was observed in K+-depleted parental strains, but not in a mutant defective in K+ transport, demonstrating a requirement for internal K+. However, external K+ proved to be a noncompetitive inhibitor (Ki = 1 mM) of CH3NH3+ uptake by K+ -replete bacteria. External Na+ had no effect on transport. The addition of NH4+ or CH3NH3+ induced a rapid exodus of intracellular 86Rb+, an analog which was able to substitute for K+. The molar ratio of CH3NH3+ uptake to Rb+ exit was 1.12 +/- 0.11. These findings support a mechanism for CH3NH3+ (NH4+) accumulation which requires K+ antiport (exchange) and is driven by the electrochemical K+ gradient.[1]

References

  1. Characterization of ammonium (methylammonium)/potassium antiport in Escherichia coli. Jayakumar, A., Epstein, W., Barnes, E.M. J. Biol. Chem. (1985) [Pubmed]
 
WikiGenes - Universities