The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cardiovascular actions of nitrous oxide or halothane in hypovolemic swine.

During normovolemia, nitrous oxide causes mild sympathetic stimulation and direct myocardial depression; these effects offset each other, resulting in only minimal cardiovascular changes. To test the hypothesis that during hypovolemia this balance would change and depression predominate, 10 swine were made hypovolemic (30% blood loss) and then were given 70% N2O (0.25 MAC in swine) or an equipotent concentration of halothane, an agent that does not cause sympathetic stimulation. The alternate anesthetic was given to the same hypovolemic swine on another day. Five minutes after induction of anesthesia during hypovolemia, both N2O and halothane caused significant, physiologically important deterioration of compensation for hemorrhage. Halothane decreased systemic vascular resistance (SVR); N2O was more variable in its action, and SVR did not decrease significantly. Both agents caused similar decreases in cardiac output, mean aortic blood pressure, stroke volume, oxygen consumption, and left ventricular minute work, despite increases in plasma epinephrine concentration and plasma renin activity. No differences were found between groups for any of these variables (P greater than 0.05). Plasma norepinephrine concentration increased only in the N2O group and was greater in that group than in the halothane group. The deterioration of cardiovascular compensation for hemorrhage was expressed metabolically by similar decreases in the two groups in partial pressure of oxygen of mixed venous blood and by increases in blood lactate concentration. Thirty minutes after induction of anesthesia, with stable end-tidal anesthetic concentrations, both groups had some cardiovascular, but no metabolic, recovery.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

  1. Cardiovascular actions of nitrous oxide or halothane in hypovolemic swine. Weiskopf, R.B., Bogetz, M.S. Anesthesiology (1985) [Pubmed]
 
WikiGenes - Universities