The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effect of heparin-induced lipolysis on the distribution of apolipoprotein e among lipoprotein subclasses. Studies with patients deficient in hepatic triglyceride lipase and lipoprotein lipase.

In normal subjects, apolipoprotein E (apo E) is present on very low density lipoproteins (VLDL) (fraction I) and on particles of a size intermediate between VLDL and low density lipoproteins (LDL) (fraction II). The major portion of apo E is, however, on particles smaller than LDL but larger than the average high density lipoproteins (HDL) (fraction III). To investigate the possible role of the vascular lipases in determining this distribution of apo E among the plasma lipoproteins, we studied subjects with primary deficiency of either hepatic lipase or of lipoprotein lipase and compared them with normal subjects. Subjects with familial hepatic triglyceride lipase deficiency (n = 2) differ markedly from normal in that fraction II is the dominant apo E-containing group of lipoproteins. When lipolysis of VLDL was enhanced in these subjects upon release of lipoprotein lipase by intravenous heparin, a shift of the apo E from VLDL into fractions II and III was observed. In contrast, apolipoproteins CII and CIII (apo CII and CIII, respectively) did not accumulate in intermediate-sized particles but were shifted markedly from triglyceride rich lipoproteins to HDL after treatment with heparin. In subjects with primary lipoprotein lipase deficiency (n = 4), apo E was confined to fractions I and III. Release of hepatic triglyceride lipase by heparin injection in these subjects produced a shift of apo E from fraction I to III with no significant increase in fraction II. This movement of apo E from large VLDL and chylomicron-sized particles occurred with little hydrolysis of triglyceride and no significant shift of apo CII or CIII into HDL from triglyceride rich lipoproteins. When both lipoprotein lipase and hepatic triglyceride lipase were released by intravenous heparin injection into normal subjects (n = 3), fraction I declined and the apo E content of fraction III increased by an equivalent amount. Either moderate or no change was noted in the intermediate sized particles (fraction II). These data strongly support the hypothesis that fraction II is the product of the action of lipoprotein lipase upon triglyceride rich lipoproteins and is highly dependent on hepatic triglyceride lipase for its further catabolism. In addition, the hydrolysis by hepatic triglyceride lipase of triglyceride rich lipoproteins in general results in a preferential loss of apo E and its transfer to a specific group of large HDL.[1]

References

 
WikiGenes - Universities