Biosynthesis of tetrahydrobiopterin: conversion of dihydroneopterin triphosphate to tetrahydropterin intermediates.
It is known that the first step in the de novo synthesis of tetrahydrobiopterin from GTP is the conversion of GTP to dihydroneopterin triphosphate. Recent evidence supports the conclusion that beyond this first step, the pterin intermediates in the pathway are all at the tetrahydro level of reduction. We have now shown that partially purified fractions from rat liver, rat brain and bovine adrenal medulla catalyze the conversion of dihydroneopterin triphosphate to tetrahydrobiopterin, as well as to the putative intermediates in the pathway, 6-pyruvoyl-tetrahydropterin and 6-lactoyl-tetrahydropterin. Results of both enzymatic and chemical studies support the assigned structures for the latter two tetrahydropterins. We have also purified extensively from brain an enzyme, distinct from sepiapterin reductase, that catalyzes the TPNH-dependent reduction of 6-pyruvoyl-tetrahydropterin to 6-lactoyl-tetrahydropterin. The role of this reductase in tetrahydrobiopterin synthesis has not yet been established.[1]References
- Biosynthesis of tetrahydrobiopterin: conversion of dihydroneopterin triphosphate to tetrahydropterin intermediates. Milstien, S., Kaufman, S. Biochem. Biophys. Res. Commun. (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg