The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A critical assessment of the mechanism by which hyperoxia attenuates exercise-induced asthma.

Recent data demonstrate that the magnitude of the heat loss that occurs from the respiratory tract during exercise correlates with the degree of post-exertional obstruction that develops in asthmatics. Respiratory heat loss relates directly to the minute ventilation and heat capacity of the inspired gas and inversely to its water content and temperature. Because it has been shown that inhaling 100% oxygen during exercise blunts the obstructive response, we wondered if this effect could be accounted for by differing values of heat exchange with air and oxygen breathing. To examine this question, we studied 10 asthmatics by measuring multiple aspects of pulmonary mechanics before and after four bouts of exhausting leg work during which the subjects inhaled either air or oxygen conditioned to provide widely differing thermal burdens on their airways. Under all inspired gas conditions, oxygen breathing produced significantly less obstruction than air. Minute ventilation was also significantly less with oxygen as was the total heat lost. As the latter fell, so did the magnitude of the postexercise obstruction. When the differences in ventilation and respiratory heat loss between air and oxygen were eliminated by eucapnic hyperventilation, the differences in the obstructive responses also disappeared. Thus, the effects of hyperoxia on exercise-induced asthma can be accounteed for solely by alterations in heat exchange.[1]

References

  1. A critical assessment of the mechanism by which hyperoxia attenuates exercise-induced asthma. Resnick, A.D., Deal, E.C., Ingram, R.H., McFadden, E.R. J. Clin. Invest. (1979) [Pubmed]
 
WikiGenes - Universities