The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Molecular cloning of the lactose-metabolizing genes from Streptococcus lactis.

Restriction endonucleases and agarose gel electrophoresis were used to analyze plasmid pLM2001, which is required for lactose metabolism by Streptococcus lactis LM0232. The enzymes XhoI, SstI, BamHI, and KpnI each cleaved the plasmid into two fragments, whereas EcoRI and BglII cleaved the plasmid into seven and five fragments, respectively. Sizing of fragments and multiple digestions allowed construction of a composite restriction map. The KpnI fragments of pLM2001 were cloned into the KpnI cleavage site of the vector plasmid pDB101. A recombinant plasmid (pSH3) obtained from a lactose-fermenting, erythromycin-resistant (Lac+ Eryr) transformant of Streptococcus sanguis Challis was analyzed by enzyme digestion and agarose gel electrophoresis. Plasmid pSH3 contained 7 of the 11 KpnI-HindIII fragments from pLM2001 and 5 of the 7 fragments from pDB101. It was determined that a 23-kilobase (kb) KpnI-generated fragment from pLM2001 had been cloned into pDB101 with deletion of part of the vector plasmid. The recombinant plasmid could be transformed with high frequency into several Lac- strains of S. sanguis, conferring the ability to ferment lactose and erythromycin resistance. The presence of pSH3 allowed a strain deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-dependent phosphotransferase system to efficiently ferment lactose. Under conditions designed to maximize curing of plasmid DNA with acriflavin, no Lac- derivatives could be isolated from cells transformed with pSH3. Seven of the 40 Lac+ colonies isolated after 10 transfers in acriflavin were shown to be sensitive to erythromycin and did not appear to harbor plasmid DNA.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

  1. Molecular cloning of the lactose-metabolizing genes from Streptococcus lactis. Harlander, S.K., McKay, L.L., Schachtele, C.F. Appl. Environ. Microbiol. (1984) [Pubmed]
 
WikiGenes - Universities