The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effects of various antipsychotic drugs upon the striatal concentrations of para-hydroxyphenylacetic acid and meta-hydroxyphenylacetic acid in the mouse.

The endogenous concentrations of p- and m-hydroxyphenylacetic acid in the mouse caudate nucleus were determined by a gas chromatographic or a gas chromatographic-mass spectrometric technique and the concentrations were about 30 and 11 ng g-1 respectively. The subcutaneous administration of (+)-butaclamol (1 mg kg-1), haloperidol (5 mg kg-1), molindone (100 mg kg-1), sulpiride (50 mg kg-1) or chlorpromazine (20 mg kg-1) increased the concentration of mouse striatal p- and m-hydroxyphenylacetic acid; the effects were observed at 2 h after drug administration. Lower doses of chlorpromazine (2 mg kg-1), haloperidol (0.2 mg kg-1) and molindone (2 mg kg-1) did not affect p- or m-hydroxyphenylacetic acid concentrations. The time course for the concentration changes produced by chlorpromazine (20 mg kg-1) revealed that the formation of the metabolites occurred within 30 min after its administration and that their efflux from the caudate nucleus took at least 4 h for p-hydroxyphenylacetic acid and more than 8 h for m-hydroxyphenylacetic acid. Promethazine and (-)-butaclamol which have chemical structures related to chlorpromazine or (+)-butaclamol respectively but which lack antipsychotic activity, produced no effect on striatal p- or m-hydroxyphenylacetic acid concentrations. The results suggest that antipsychotic drugs increase the utilization of mouse striatal p- and m-tyramine and that after use the amines are metabolized by monoamine oxidase to form p- or m-hydroxyphenylacetic acid. The synthesis of the acid metabolites occurs within 30 min after chlorpromazine administration and their efflux from the caudate nucleus takes from 4-8 h.[1]

References

 
WikiGenes - Universities