The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of endogenous substance P in stress-induced activation of mesocortical dopamine neurones.

The dopamine (DA) innervation to the forebrain arises from subpopulations of midbrain DA neurones broadly classified as nigrostriatal, mesolimbic and mesocortical. Significant differences in the autoregulatory mechanisms and neuronal inputs of these DA pathways may account for their differences in physiological and pharmacological responsiveness. For example, footshock stress can activate rat mesocortical DA cells but does not alter nigrostriatal DA turnover, while also decreasing substance P ( SP) concentrations in the midbrain interpeduncular nucleus and in the adjacent ventral tegmental area (VTA), but not in the substantia nigra (SN). This suggested that the activation of the SP input to the VTA may mediate activation of certain DA systems by footshock stress; behavioural studies also had suggested an excitatory effect of SP on DA cells in the VTA. SP antagonists now available are neurotoxic and of questionable efficacy, we therefore used monoclonal antibody against SP. Antibody microinjected into the VTA prevented normal footshock-induced activation of mesocortical DA neurones, suggesting mediation by SP input to the VTA. The in vivo application of antibodies may prove valuable in studies of neuropeptides in the central nervous system (CNS).[1]

References

  1. Role of endogenous substance P in stress-induced activation of mesocortical dopamine neurones. Bannon, M.J., Elliott, P.J., Alpert, J.E., Goedert, M., Iversen, S.D., Iversen, L.L. Nature (1983) [Pubmed]
 
WikiGenes - Universities