The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Anthracenyl crown ethers and cryptands as fluorescent probes for solid-phase transitions of phosphatidylcholines: syntheses and phospholipid membrane studies.

Three structurally related crown compounds and cryptands have been synthesized that differ by the number and linkage of coronand units and anthracene moieties. The interaction of the fluorescent dyes with sonicated dimyristoylphosphatidylcholine (DMPC) vesicles is characterized by the relative quantum yields, uptake kinetics, binding curves, lifetimes, fluorescence titrations with water- and lipid-soluble quenching agents, fluorescence anisotropy, and equilibrium cooling curves. The most lipophilic compound II, which displays a similar quantum yield as the parent fluorophore 9,10-dimethylanthracene, shows a nearly equal distribution between solid and fluid lipid and is located at the bilayer surface. The least lipophilic compound IV is excluded from the hydrocarbon phase. The anthracenophane cryptand III preferentially partitions into solid-phase lecithins with the highest affinity for the phases L epsilon and L beta. The binding constant to DMPC amounts to (5.4 +/- 1.3) X 10(2) M-1 at 0 degrees C. From fluorescence quenching titrations it is concluded that the average position of the anthracenoyl dye III discontinuously shifts during the gel to liquid crystalline transition from the glycerol backbone to the choline head group. Electron microscopy and NMR experiments revealed that the anthracenophane induces in the liquid crystalline phase the fusion of small unilamellar DMPC vesicles to unilamellar medium-sized vesicles and macrovesicles, which subsequently fuse at the transition temperature to large multilamellar coacervates. Due to its large change of fluorescence intensity, the anthracenophane cryptand is a very sensitive probe for the detection of the pretransition of symmetrically substituted and of the subtransition of asymmetrically substituted phosphatidylcholines.(ABSTRACT TRUNCATED AT 250 WORDS)[1]


WikiGenes - Universities