Expression of unselected adenovirus genes in human cells co-transformed with the HSV-1 tk gene and adenovirus 2 DNA.
We have introduced adenovirus 2 genes into high molecular weight DNA of permissive human cells by co-transformation of tk- human 143 cells with Ad2 restriction enzyme fragments and a cloned Bam HI fragment that carries the HSV-1 thymidine kinase gene. Tk+ cells were isolated after selection and maintenance in HAT medium. Several co-transformed lines are able to complement the growth of Ad5 dl312 (delta 1.2--3.7) and Ad5 dl434 (delta 2.6--8.7), deletion mutants that lack sequences from the left end of the viral genome. The amount and arrangement of viral sequences in the co-transformed cell lines have been analyzed by restriction endonuclease digestion and filter hybridization. Most of the cell lines contain a single insertion of the HSV-1 tk fragment and a single insert of adenoviral DNA. However, one line (B1) contains at least four different insertions, two of which are present in multiple copies. The adenoviral DNA in all cell lines is composed of sequences from the left end of the genome and extends for varying lengths in different lines. Two cell lines that complement deletion mutants efficiently synthesize both early region 1a and 1b mRNAs. The B1 line synthesizes low levels of 1a mRNA, higher levels of 1b mRNA and a unique mRNA that maps to the right of the 1b gene family. When grown continuously in HAT medium, some cell lines are quite stable while others are fairly unstable. Some tk+ subclones support the growth of viral mutants as well as the parental line while others give reduced levels of complementation. For all tk+ subclones examined, the alteration or reduction in viral gene expression is independent of changes in the pattern of integration of viral DNA.[1]References
- Expression of unselected adenovirus genes in human cells co-transformed with the HSV-1 tk gene and adenovirus 2 DNA. Grodzicker, T., Klessig, D.F. Cell (1980) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









