The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effects of cholestyramine on receptor-mediated plasma clearance and tissue uptake of human low density lipoproteins in the rabbit.

This study examines the effects of cholestyramine (2 g/day) on the plasma clearance and tissue uptake of human low density lipoprotein (LDL) in rabbits. 1,2-Cyclohexanedione modification of human LDL abolishes its recognition by high affinity cell membrane receptors in vitro and delays its plasma clearance in comparison to native LDL. Consequently, the difference between the fractional rates of catabolism of simultaneously injected native and cyclohexanedione-treated LDL is an index of in vivo receptor-mediated clearance of the lipoprotein. When human 125I-LDL and 131I-cyclohexanedione-treated LDL were injected into rabbits, 44% of the lipoprotein was cleared from the plasma by the receptor mechanism. Various tissues were removed from the animals at the end of the turnover study and their relative uptakes of 125I native and 131I-cyclohexanedione-treated LDL were measured. All exhibited receptor activity to some extent, incorporating more native than cyclohexanedione-modified LDL. The greatest receptor activity per g of tissue was found in lymph nodes, spleen, and liver and, in terms of whole organ uptake, the liver played a major role in LDL catabolism. Treatment of the rabbits with cholestyramine lowered the circulating LDL cholesterol level by promoting its clearance (120%, p < 0.001) via the receptor pathway. This was associated with a virtual doubling of receptor-mediated incorporation of the lipoprotein into the liver. These results suggest that the drain which cholestyramine induces in the hepatic cholesterol pool promotes LDL receptor activity in this organ and thereby lowers the level of circulating LDL.[1]

References

 
WikiGenes - Universities