The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Proteolytic enhancement of rotavirus infectivity: molecular mechanisms.

The polypeptide compositions of single-shelled and double-shelled simian rotavirus particles were modified by exposure to proteolytic enzymes. Specifically, a major outer capsid polypeptide ( VP3) having a molecular weight of 88,000 in double-shelled particles was cleaved by trypsin to yield two polypeptides, VP5* and VP8* (molecular weights, 60,000 and 28,000, respectively). The cleavage of VP3 by enzymes that enhanced infectivity (trypsin, elastase, and pancreatin) yielded different products compared to those detected when VP3 was cleaved by chymotrypsin, which did not enhance infectivity. The appearance of VP5* was correlated with an enhancement of infectivity. Cleavages of the major internal capsid polypeptide VP2 were also observed. The VP2 cleavage products had molecular weights similar to those of known structural and nonstructural rotavirus polypeptides. We confirmed the precursor-product relationships by comparing the peptide maps of the polypeptides generated by digestions with V-8 protease and chymotrypsin. The remaining rotavirus structural polypeptides, including the outer capsid glycoproteins ( VP7 and 7a), were not altered by exposure to pancreatic enzymes. Cleavage of VP3 was not required for virus assembly, and specific cleavage of the polypeptides occurred only on assembled particles. We also discuss the role of cleavage activation in other virus-specific biological functions (e.g., hemagglutination and virulence).[1]

References

  1. Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. Estes, M.K., Graham, D.Y., Mason, B.B. J. Virol. (1981) [Pubmed]
 
WikiGenes - Universities