RNA ligase in bacteria: formation of a 2',5' linkage by an E. coli extract.
Ligase activity was detected in extracts of Escherichia coli, Clostridium tartarivorum, Rhodospirillum salexigens, Chromatium gracile, and Chlorobium limicola. Ligase was measured by joining of tRNA halves produced from yeast IVS-containing tRNA precursors by a yeast endonuclease. The structure of tRNATyr halves joined by an E. coli extract was examined. The ligated junction is resistant to nuclease P1 and RNAase T2 but sensitive to venom phosphodiesterase and alkaline hydrolysis, consistent with a 2',5' linkage. The nuclease-resistant junction dinucleotide comigrates with authentic (2',5') APA marker in thin-layer chromatography. The phosphate in the newly formed phosphodiester bond is derived from the pre-tRNA substrate. The widespread existence of a bacterial ligase raises the possibility of a novel class of RNA processing reactions.[1]References
- RNA ligase in bacteria: formation of a 2',5' linkage by an E. coli extract. Greer, C.L., Javor, B., Abelson, J. Cell (1983) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg