The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

ATP-driven proton fluxes across membranes of secretory organelles.

The ATP-dependent proton uptake by chromaffin granule membranes, lysosomes, and synaptosomes was examined. In synaptosomes the reaction was absolutely dependent on the presence of chloride, while in chromaffin granules chloride had a profound effect and in lysosomes only a minor effect. The presence of chloride markedly increases the rate of collapse of delta pH by carbonyl cyanide p-trifluoromethoxyphenylhydrazone in all three organelles. Ascorbate with phenazine methosulfate uncoupled the ATP-dependent proton uptake by chromaffin granules, but had no effect on lysosomes and synaptosomes. Proton uptake by submitochondrial particles was about 50-fold more sensitive to dicyclohexylcarbodiimide than the proton uptake by chromaffin granule membranes. Chromaffin granule membranes were treated with 2 M sodium bromide to inactivate the mitochondrial ATPase. The treatment caused a complete inhibition of the ATP-dependent proton uptake. Solubilization of these membranes by sodium cholate, followed by reconstitution by cholate dilution revealed the ATP-dependent proton uptake of the system. It is concluded that the genuine ATPase enzyme of chromaffin granules is a proton translocator.[1]

References

  1. ATP-driven proton fluxes across membranes of secretory organelles. Cidon, S., Ben-David, H., Nelson, N. J. Biol. Chem. (1983) [Pubmed]
 
WikiGenes - Universities