The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Spontaneous calcium release from sarcoplasmic reticulum. Effect of local anesthetics.

Spontaneous calcium release from purified light sarcoplasmic reticulum has been previously described (Palade, P., Mitchell, R. D., and Fleischer, S. (1983) J. Biol. Chem. 258, 8098-8107) and found to be distinct from several other forms of Ca2+ release. Ca2+ release occurs after a lag period following active Ca2+ preloading and depletion of extravesicular Ca2+. In the present study, we find that local anesthetics inhibit spontaneous Ca2+ release, in a time-dependent manner, varying considerably in the preincubation time required to exert maximal effect. At pH 7.0, hydrophilic and mostly charged local anesthetics, such as procaine, procainamide, and N-(2,6-dimethylphenyl carbamoyl methyl)triethyl ammonium bromide, inhibit Ca2+ release only after long preincubations (hours), whereas more hydrophobic local anesthetics are effective after only a short incubation (minutes) with sarcoplasmic reticulum. The more hydrophobic anesthetics take somewhat longer to reach equilibrium, as studied by inhibition of unidirectional Ca2+ efflux, and there is a direct relationship between hydrophobic partition coefficient and half-time to reach equilibrium. Agents known to inhibit permeability pathways for monovalent cations i.e. K+ channel blockers (decamethonium and n-dodecane-1, 12-N,N,N,N',N',N'-hexamethyl-bis-ammonium) or the anion blocker (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid), do not inhibit spontaneous Ca2+ release. Carbonyl cyanide m-fluorophenylhydrazone, a protonophore, and gramicidin D, a monovalent cation ionophore, have no effect on Ca2+ release whether local anesthetics are present or not, while the Ca2+ ionophore A23187 relieves inhibition of Ca2+ release by local anesthetics. Ruthenium red does not inhibit spontaneous Ca2+ release. These findings suggest that the binding site(s) for local anesthetics is located on the inner face of the sarcoplasmic reticulum membrane and that local anesthetics interact directly with a Ca2+ channel rather than with other permeability pathways which might indirectly influence Ca2+ channel gating.[1]

References

  1. Spontaneous calcium release from sarcoplasmic reticulum. Effect of local anesthetics. Volpe, P., Palade, P., Costello, B., Mitchell, R.D., Fleischer, S. J. Biol. Chem. (1983) [Pubmed]
 
WikiGenes - Universities