The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Chain length dependence of phosphatidylcholine hydrolysis catalyzed by lipoprotein lipase. Effect of apolipoprotein C-II.

The effect of apolipoprotein C-II (apoC-II) on the bovine milk lipoprotein lipase (LpL)-catalyzed hydrolysis of a homologous series of saturated phosphatidylcholines was examined with respect to the fatty acyl chain length of the substrates. Dilauryl-, dimyristoyl-, dipalmitoyl-, and distearoylphosphatidylcholine solubilized by Triton X-100 and sonicated vesicles of dimyristoylphosphatidylcholine were used as substrates. The maximal rate of the LpL-catalyzed hydrolysis of each of these lipids was determined in the absence and presence of apoC-II. The activation factor (the ratio of enzyme activity with apoC-II to that without the activator protein) increased with increasing mol ratios of apoC-II to LpL and was maximal at a ratio of approximately 50. At all apoC-II/ LpL mole ratios tested, the activation factor increased as a function of fatty acyl chain length. A quantitative relationship between fatty acyl chain length and the extent of maximal activation of LpL by apoC-II was observed: the logarithm of the activation factor is a linear function of the number of carbon atoms of a single fatty acyl chain of the substrates.[1]

References

 
WikiGenes - Universities