The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cucumber cotyledon lipoxygenase oxygenizes trilinolein at the lipid/water interface.

The reactivity of cucumber cotyledon lipoxygenase with trilinolein was examined. The activity of the enzyme against linoleic acid rapidly decreased with increasing pH of the assay solution, and essentially no activity could be detected above pH 8. 5. The rapid decrease in activity was not the result of an inactiveness of the enzyme at alkaline pH, because with trilinolein, the enzyme showed a broad pH-activity profile, and substantial activity could be detected even at pH 9. 0. Rather, the decrease in activity was due to the dissociation of the linoleic acid emulsion into acid-soap aggregates and/or the monomeric form, depending on the ionization of the terminal carboxylic group. This suggests that cucumber cotyledon lipoxygenase acts only on an insoluble substrate at the lipid/water interface but not on a soluble one. High-performance liquid chromatography analyses of the products formed from trilinolein revealed that the enzyme inserted oxygen into the acyl moiety of trilinolein without hydrolysis of the ester bonds. Preincubation of the enzyme with triolein emulsions effectively abolished its activity against trilinolein added afterward. Furthermore, the enzyme was adsorbed on the trilinolein or triolein emulsion droplets in an essentially irreversible manner. A reaction velocity curve of the enzyme with trilinolein showed saturation kinetics. This is thought to be due to a regional substrate deficiency as the reaction proceeds. These lines of evidence indicate that the enzyme, once bound to the lipid/water interface, is unable to break free and bind to other emulsions.[1]

References

 
WikiGenes - Universities