The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Intracellular messengers contributing to persistent nociception and hyperalgesia induced by L-glutamate and substance P in the rat formalin pain model.

The contribution of the intracellular messengers nitric oxide, arachidonic acid and protein kinase C to persistent nociception in response to tissue injury in rats was examined following the subcutaneous injection of formalin into the hindpaw. Formalin injury-induced nociceptive behaviours were reduced by intrathecal pretreatment with inhibitors of nitric oxide synthase (NG-nitro-L-arginine methyl ester, L-NAME), arachidonic acid (dexamethasone) or protein kinase C [protein kinase C (19-26) and 1-95-(isoquinolinesulphonyl)-2-methylpiperazine dihydrochloride, H-7]. Each of these agents affected the tonic, but not the acute, phase of the formalin response. Furthermore, none of these agents affected mechanical or thermal flexion reflex thresholds in rats not injected with formalin. Conversely, formalin-induced nociceptive responses were enhanced by stimulators of nitric oxide (sodium nitroprusside), arachidonic acid metabolism (arachidonic acid) or protein kinase C [(+/-)-1-oleoyl-2-acetyl-glycerol], and were slightly reduced by inositol trisphosphate. Mechanical flexion reflexes were also reduced by arachidonic acid, while thermal flexion reflexes were reduced after treatment with sodium nitroprusside, arachidonic acid or [(+/-)-1-oleoyl-2-acetyl-glycerol]. The enhancement of formalin nociceptive behaviours (hyperalgesia) in rats treated with L-glutamate or substance P was reversed by pretreatment with inhibitors of nitric oxide (L-NAME), arachidonic acid (dexamethasone) or protein kinase C (H-7). The results suggest that central sensitization and persistent nociception following formalin-induced tissue injury, and the hyperalgesia in the formalin test induced by L-glutamate and substance P, are dependent on the intracellular messengers nitric oxide, arachidonic acid and protein kinase C.[1]

References

 
WikiGenes - Universities