The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Glucagon and glucagon-like peptide 1: selective receptor recognition via distinct peptide epitopes.

Glucagon and glucagon-like peptide 1 (GLP-1) are homologous peptide hormones that are recognized by likewise homologous, but highly selective receptors. Analogs of glucagon and GLP-1, in which the divergent residues were systematically exchanged, were employed to identify the structural requirements for their selective receptor recognition. Substitutions in the NH2-terminal part of the glucagon molecule with the corresponding GLP-1 residues, as for example in [Ala2,Glu3]-glucagon and [Val10,Ser12]glucagon, reduced the binding affinity for the glucagon receptor several hundred-fold without increasing the affinity for the GLP-1 receptor. In contrast, introduction of GLP-1 residues into the far COOH-terminal part of the glucagon molecule, e.g. [Val27,Lys28,Gly29,Arg30]glucagon, had a minimal effect on recognition of the glucagon receptor, but improved the affinity of the analog for the GLP-1 receptor up to 200-fold. Similarly, substitutions in especially the far COOH-terminal part of the GLP-1 molecule with the corresponding glucagon residues, e.g. des-Arg30-[Met27,Asn28,Thr29]GLP-1, decreased the affinity for the GLP-1 receptor several hundred-fold (IC50 = 0.4-190 nM) without increasing the affinity for the glucagon receptor. Conversely, substitutions in the NH2-terminal part of the GLP-1 molecule impaired the affinity for the GLP-1 receptor only moderately. We conclude that the selective recognition of the glucagon and GLP-1 receptors is determined by residues located at opposite ends of the homologous peptide ligands. This conclusion is supported by the observation that a "chimeric" peptide consisting of the NH2-terminal part of the glucagon molecule joined to the COOH-terminal part of the GLP-1 molecule was recognized with high affinity by both receptors.[1]

References

  1. Glucagon and glucagon-like peptide 1: selective receptor recognition via distinct peptide epitopes. Hjorth, S.A., Adelhorst, K., Pedersen, B.B., Kirk, O., Schwartz, T.W. J. Biol. Chem. (1994) [Pubmed]
 
WikiGenes - Universities