The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus.

Vertebrate neural development is initiated during gastrulation by the inductive action of the dorsal mesoderm (Spemann's organizer in amphibians) on neighbouring ectoderm, which eventually gives rise to the central nervous system from forebrain to spinal cord. Here we present evidence that bFGF can mimic the organizer action by inducing Xenopus ectoderm cells in culture to express four position-specific neural markers (XeNK-2, En-2, XIHbox1 and XIHbox6) along the anteroposterior axis. bFGF also induced the expression of a general neural marker NCAM but not the expression of immediate-early mesoderm markers (goosecoid, noggin, Xbra and Xwnt-8), suggesting that bFGF directly neuralized ectoderm cells without forming mesodermal cells. The bFGF dose required to induce the position-specific markers was correlated with the anteroposterior location of their expression in vivo, with lower doses eliciting more anterior markers and higher doses more posterior markers. These data indicate that bFGF or its homologue is a promising candidate for a neural morphogen for anteroposterior patterning in Xenopus. Further, we showed that the ability of ectoderm cells to express the anterior markers in response to bFGF was lost by mid-gastrula, before the organizer mesoderm completely underlies the anterior dorsal ectoderm. Thus, an endogenous FGF-like molecule released from the involuting organizer may initiate the formation of the anteroposterior axis of the central nervous system during the early stages of gastrulation by forming a concentration gradient within the plane of dorsal ectoderm.[1]

References

 
WikiGenes - Universities