The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of invasion, gelatinase activity, tumor take and metastasis of malignant cells by N-acetylcysteine.

The thiol N-acetylcysteine (NAC) is currently considered one of the most promising cancer chemopreventive agents by virtue of its multiple and coordinated mechanisms affecting the process of chemical carcinogenesis. Recent studies have shown that an unpaired cysteine residue in the propeptide plays a key role in inactivation of latent metastasis-associated metalloproteinases: the present study was designed to assess whether NAC could also affect tumor take, invasion and metastasis of malignant cells. As assessed by zymographic analysis, NAC completely inhibited the gelatinolytic activity of type-IV collagenases in the cells tested (gelatinases A and B). Moreover, NAC was efficient in inhibiting the chemotactic and invasive activities of tumor cells of human (A2058 melanoma) and murine origin (K1735 and B16-F10 melanoma cells as well as C87 Lewis lung carcinoma cells) in Boyden-chamber assays, which are predictive of the invasive and metastatic properties. Reduced glutathione (GSH) had a similar, although less effective activity. The number of lung metastases decreased sharply when B16-F10 murine melanoma cells, injected i.v. into nude mice, were pre-treated with NAC and resuspended in medium supplemented with 10 mM NAC. In other experiments NAC was given in drinking water, starting 48-72 hr before subcutaneous inoculation of either B16-F10 cells or of their highly metastatic variant B16-BL6, or intramuscular injection of LLC cells. In all experiments NAC treatment decreased the weight of the locally formed primary tumor and produced a dose-related delay in tumor formation. Spontaneous metastasis formation by B16-F10 and B16-BL6 tumors was slightly yet significantly reduced by oral administration of NAC. However, this was not observed for Lewis lung tumors. These data indicate that NAC affects the process of tumor-cell invasion and metastasis, probably due to inhibition of gelatinases by its sulfhydryl group, with the possible contribution of other mechanisms, including the potent antioxidant activity of this thiol.[1]

References

  1. Inhibition of invasion, gelatinase activity, tumor take and metastasis of malignant cells by N-acetylcysteine. Albini, A., D'Agostini, F., Giunciuglio, D., Paglieri, I., Balansky, R., De Flora, S. Int. J. Cancer (1995) [Pubmed]
 
WikiGenes - Universities